Bad Bad Roadway

1. How bad (unsafe) is your roadway?
a. Can something be done?
b. You need to do something!
c. Someone is going to get killed!

Goal:
Provide some insight on how engineering decisions are made to address public safety concerns.

Locations

Review 4 common concerns:

1. Rural un-signalized intersection (high speed 2-way stop)
2. Rural signalized intersection
3. Urban signalized intersection
4. Rural segment of highway

Historical Crash Data - 5 years

1. Rural intersection (high speed 2-way stop)

- 22 total/1 fatality, 1 serious, 11 minor injury, 9 property damage

2. Rural signalized intersection (high speed)

- 72 total/ 0 fatality, 19 minor injury, 53 property damage

3. Urban Signalized

- 224 total/O fatality, 1 serious, 69 minor injury, 154 property damage

4. Rural highway segment (13 miles)

- 75 total (including intersections) -- 1 fatality, 1 serious injury, 32 minor, 41 property damage
- 31 total (segments only) - 0 fatal, 10 minor injury, 21 Property damage

Vote

- What is the most dangerous area?

1. Rural intersection (high speed 2-way stop)

- 22 total/1 fatality, 1 serious, 11 minor injury, 9 property damage

2. Rural signalized intersection (high speed)

- 72 total/ 0 fatality, 19 minor injury, 53 property damage

3. Urban Signalized

- 224 total/ 0 fatality, 1 serious, 69 minor injury, 154 property damage

4. Rural highway segment (13 miles)

- 75 total (including intersections) -- 1 fatality, 1 serious injury, 32 minor, 41 property damage
- 31 total (segments only) - 0 fatal, 10 minor injury, 21 Property damage

Voter Results

5

What might be some next steps?

Gather Information

1. Understand concern
2. Gather data

- Traffic Crashes
- Traffic volumes

3. Get perspective

- Ranking

4. Determine possible solutions
5. Benefit vs Cost

Information

- Crash Cost
- Crash Rates
- Type of crashes/locations/time
- Public Opinion
- Trends - Up/down/consistent

Crash Costs and Rates

- Crash Cost
- Number and type of crashes x cost per crash type
- Yearly cost of crashes
- Crash Rates (CR) - help provide perspective
- Number of crashes per year for each 1,000,000 vehicles entering the intersection
- State wide averages for similar conditions
- Compare individual site rates to state averages

Crash Rates Comparison

1. Rural intersection (high speed 2-way stop)

- 22 total/ 1 fatality, 1 serious, 11 minor injury, 9 property damage
- Actual $C R=1.38 / C R=0.25$ \qquad Crash Cost = \$607,880

2. Rural signalized intersection

- 72 total/ 0 fatality, 19 minor injury, 53 property damage
- Actual $C R=1.49 / C R=0.45$ \qquad Crash Cost = \$448,160

3. Urban Signalized

- 224 total/0 fatality, 1 serious, 69 minor injury, 154 property damage
- Actual $C R=2.39 / C R=0.70---------$ Crash Cost $=\$ 1,632,680$

4. Rural highway segment (13 miles including intersections)

- 75 total/ 1 fatality, 1 serious injury, 32 minor, 41 property damage
- Actual $\mathrm{CR}=0.62 / \mathrm{CR}=0.60$----------- Crash Cost $=\$ 340,000$

Statewide Average Crash Rates Intersections

Five Years of Crash Data		CR	SR	FR	FAR
	Low Volume, Low Speed	0.52	0.71	0.09	0.42
	Low Volume, High Speed	0.40	0.55	0.06	0.32
	High Volume, Low Speed	0.70	0.97	0.12	0.76
	High Volume, High Speed	0.45	0.63	0.11	0.48
$\begin{aligned} & \frac{n}{0} \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Urban Thru/Stop	0.18	0.26	0.09	0.33
	Rural Thru/Stop	0.25	0.41	0.45	1.05
	All Way Stop	0.35	0.50	0.14	0.57
	Other	0.16	0.21	0.05	0.17

Statewide Crash Rates for Sections

Five Years of Crash Data	Non-Junction Crashes				All Crashes			
	CR	SR	FR	FAR	CR	SR	FR	FAR
Rural 2-lane : ADT $\in[0,1499]$	0.40	0.72	1.00	2.76	0.61	1.07	1.50	3.97
Rural 2-lane : ADT \in [1500,4999]	0.31	0.51	0.75	1.61	0.53	0.87	1.14	2.53
Rural 2-lane : ADT \in [5000, 7999$]$	0.30	0.48	0.58	1.37	0.60	0.96	0.98	2.42
Rural 2-Iane : ADT $\in[8000, \infty)$	0.35	0.53	0.60	1.13	0.76	1.15	0.87	1.97
Urban 2-lane : ADT \in [0,1499]	0.61	1.13	2.18	6.55	1.46	2.45	2.91	10.19
Urban 2-lane : ADT \in [1500,4999]	0.39	0.58	0.62	1.37	1.32	1.88	1.16	2.87
Urban 2-lane : ADT $\in[5000,7999]$	0.57	0.79	0.32	1.16	1.80	2.53	0.45	2.77
Urban 2-lane : ADT $\in[8000, \infty)$	0.67	0.93	0.34	1.16	2.24	3.12	0.58	2.56
Rural Freeway	0.45	0.61	0.21	0.65	0.56	0.76	0.23	0.75
Urban Freeway	0.82	1.09	0.12	0.49	1.13	1.51	0.16	0.67
Rural Expressway	0.34	0.50	0.24	0.70	0.66	0.98	0.56	1.60
Urban Expressway	0.50	0.69	0.20	0.61	1.64	2.35	0.57	2.02
Rural 4-Iane Undivided	0.29	0.43	0.00	0.78	0.64	0.95	0.00	1.36
Urban 4-lane Undivided	0.86	1.11	0.13	0.79	3.80	5.03	0.59	3.37
Rural 4-Iane Divided	0.29	0.44	0.20	0.61	0.87	1.28	0.51	1.78
Urban 4-lane Divided	0.62	0.82	0.20	0.70	2.76	3.70	0.53	2.91
3-Iane Undivided	0.56	0.77	0.39	0.77	1.95	2.76	0.64	2.19
5-Iane Undivided	0.76	1.03	0.00	1.16	2.59	3.60	0.00	2.89

Vote after Crash Rate Information

Vote

Did you change your mind?

Crash Rates Comparison

1. Rural intersection (high speed 2-way stop)

- 22 total/ 1 fatality, 1 serious, 11 minor injury, 9 property damage
- Actual $C R=1.38 / C R=0.25$ \qquad Crash Cost = \$607,880

2. Rural signalized intersection

- 72 total/ 0 fatality, 19 minor injury, 53 property damage
- Actual $C R=1.49 / C R=0.45$ \qquad Crash Cost = \$448,160

3. Urban Signalized

- 224 total/0 fatality, 1 serious, 69 minor injury, 154 property damage
- Actual $C R=2.39 / C R=0.70---------$ Crash Cost $=\$ 1,632,680$

4. Rural highway segment (13 miles including intersections)

- 75 total/ 1 fatality, 1 serious injury, 32 minor, 41 property damage
- Actual $\mathrm{CR}=0.62 / \mathrm{CR}=0.60$----------- Crash Cost $=\$ 340,000$

Vote Results

?

What other data may be needed?

Additional Crash Data

- What type of crashes are occurring?

1. Rural un-signalized intersection -60% (12 of 22) Right angle
2. Rural Signalized intersection -90% (57 of 72) rear end
3. Urban Signal -78% rear end (174 of 224)/7\% right angle/misc.
4. Rural Highway Segment -

- Including junctions - 75 total -- 20\% rt angle/15\% head-on/37\% rear end/16\% run-off-road
- Not including junctions - 35 total --- 37% run-off-road/26\% headon/23\% other

Where and Why Discussion

1. Rural un-signalized intersection -60% (12 of 22) Right angle

- Poor gaps selection or running stop sign?

2. Rural Signalized intersection - 90% (57 of 72) rear end

- Where occurring? Congestion related? Timing related

3. Urban Signal -78% rear end (174 of 224)/7\% right angle/misc.

- Limited public outcry/ mostly property damage

4. Rural Highway Segment -

- Including junctions - 75 total -- 20% rt angle/ 15% head-on/37\% rear end/16\% run-off-road
- Not including junctions - 35 total --- 37\% run-off-road/26\% head-on/18\% deer/ 19\% other

Possible Solutions

1. Rural un-signalized intersections (right angle)

- Additional signage/sight distance/RICWS/Reduced Conflict Intersection/Signal?

2. Rural Signalized Intersection (Rear-End)

- Advanced warning flashers/Conspicuous signal heads/lighting

3. Urban Signal (Rear-end)

- Improved signal timing (low costs)
- Congestion management (very high costs)

4. Rural highway segment (mixture of)

- Rumble stripes (low cost) - centerline and shoulder (head-on \& run-off-road)
- Rural left turn lanes (high costs/\$250,000 each plus R/W)

Other Helpful Information

- Cost vs Benefit
- Improvement costs
- Monies available
- Impact - expected reduction in crashes
- Priority
- Ranking - District 12 counties
- Planned road work
- STIP/CHIP - 4 year work plan/10 year work

Discussion

- Where might one spend their limited Safety Funds?
- Best bang for buck
- Low cost more coverage area
- Focus on serious crash risk areas?
- High probability future fatality risk
- Engineering can mitigate

Strategies Rural Segments

- Rumble Stripes
- Centerline/Edge line
- Enhanced Edge line
- Durable wet reflective/6 inch
- Safety Edge
- Shoulder Paving/widening
- Buffers between opposing lanes -2 lane highway
- Clear Zone enhancements/maintenance
- Ditch/embankment Improvements
- Constrictor Intersections
- Turn Lanes

Strategies Rural Segments

- Expressways
- Reduced conflict intersections
- Eliminates the crossing movement
- Similar or better safety benefits than traffic signals
- Only affects approx. 5\% traffic - cross street thru/left
- Rural Intersection Collision Warning System (RICWS)
- Traffic signal?

Strategies Urban Segments

- Signals
- Blue light indicators
- Retro Reflective back plates
- Improved signal timing
- Completed Streets
- Bump outs at intersections
- Narrower lanes
- Better sidewalks/trails
- Narrower lanes
- Manage speeds
- Roundabouts - including mini

Constrictor Intersection

Constrictor Intersections

Rural Intersection Collision Warning (RICWS)

Centerline Rumble Stripes

Centerline Buffer

Reduced Conflict Intersection

Cologne: US 212 - Mn 284

Photo courtesy Bolton \& Menk, Inc.

$2005-2015$

Dynamic Speed Feedback Signs

DEPARTMENT OF TRANSPORTATION

Questions?

Thank you again!

